194 research outputs found

    In Vivo Expansion of Co-Transplanted T Cells Impacts on Tumor Re-Initiating Activity of Human Acute Myeloid Leukemia in NSG Mice

    Get PDF
    Human cells from acute myeloid leukemia (AML) patients are frequently transplanted into immune-compromised mouse strains to provide an in vivo environment for studies on the biology of the disease. Since frequencies of leukemia re-initiating cells are low and a unique cell surface phenotype that includes all tumor re-initiating activity remains unknown, the underlying mechanisms leading to limitations in the xenotransplantation assay need to be understood and overcome to obtain robust engraftment of AML-containing samples. We report here that in the NSG xenotransplantation assay, the large majority of mononucleated cells from patients with AML fail to establish a reproducible myeloid engraftment despite high donor chimerism. Instead, donor-derived cells mainly consist of polyclonal disease-unrelated expanded co-transplanted human T lymphocytes that induce xenogeneic graft versus host disease and mask the engraftment of human AML in mice. Engraftment of mainly myeloid cell types can be enforced by the prevention of T cell expansion through the depletion of lymphocytes from the graft prior transplantation

    Characterization of Demolished Concretes with Three Different Strengths for Recycling as Coarse Aggregate

    Get PDF
    This paper presents a physical characterization for the recycling into new concretes of three comminuted concretes: C16/20 (“ordinary concrete”), C50/60 (“high strength concrete”), and C70/85 (“very high strength concrete”). The top size of the crushed concretes was 19.1 mm and the size range was 4.75 to 19.1 mm. The characterization was carried out with coarse aggregate liberation, to be prepared and concentrated in a gravity concentration process. The density distribution of the coarse aggregate, cement paste, and sand was carried out in different size ranges (4.75/19.1 mm; 4.75/8.0 mm; 8.0/12.5 mm; and 12.5/19.1 mm) for the three concretes studied. The form factor of the samples, as well as the porosity determination of particles in different density ranges, are presented. The obtained results indicate that the coarse aggregate liberation was more intensive for the low resistance concrete (C16/20), but a reasonable coarse aggregate recovery is possible for all concretes

    Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3 and KIT driven Leukemogenesis

    Get PDF
    Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN) and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK), whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis

    MLL1 is required for maintenance of intestinal stem cells and the expression of the cell adhesion molecule JAML

    Get PDF
    Epigenetic control is crucial for lineage-specific gene expression that creates cellular identity during mammalian development and in adult organism. Histone 3 lysine 4 methylation (H3K4) is a universal epigenetic mark. Mixed lineage leukemia (MLL1) is the founding member of the mammalian family of H3K4 methyltransferases. It was originally discovered as the main gene mutated in early onset leukemias and then found to be required for hematopoietic stem cell development and maintenance. However, the roles of MLL1 in non-hematopoietic tissues remain largely unexplored. To bypass hematopoietic lethality, we used bone marrow transplantation and conditional mutagenesis to discover that the most overt phenotype in Mll1-mutant mice is intestinal failure. Loss of MLL1 is accompanied by a differentiation bias towards the secretory lineage with increased numbers of goblet cells. MLL1 is expressed in intestinal stem cells (ISCs) and transit amplifying (TA) cells but at reduced levels in Paneth cells and not in the villus. MLL1 is required for the maintenance of intestinal stem cells (ISCs) and proliferation in the crypt. Transcriptome analysis implicate MLL1-dependent expression in ISCs of several transcription factors including Pitx2, Gata4, Foxa1 and Onecut2, and also a cell adhesion molecule, Jaml. Reactive transcriptome changes in Paneth cells and organoids imply that JAML plays a key role in the crypt stem cell niche. All known postnatal functions of MLL1 relate to stem cell maintenance and lineage decisions thereby highlighting the suggestion that MLL1 is a master stem cell regulator

    Human gene-engineered calreticulin mutant stem cells recapitulate MPN hallmarks and identify targetable vulnerabilities

    Get PDF
    Calreticulin (CALR) mutations present the main oncogenic drivers in JAK2 wildtype (WT) myeloproliferative neoplasms (MPN), including essential thrombocythemia and myelofibrosis, where mutant (MUT) CALR is increasingly recognized as a suitable mutation-specific drug target. However, our current understanding of its mechanism-of-action is derived from mouse models or immortalized cell lines, where cross-species differences, ectopic over-expression and lack of disease penetrance are hampering translational research. Here, we describe the first human gene-engineered model of CALR MUT MPN using a CRISPR/Cas9 and adeno-associated viral vector-mediated knock-in strategy in primary human hematopoietic stem and progenitor cells (HSPCs) to establish a reproducible and trackable phenotype in vitro and in xenografted mice. Our humanized model recapitulates many disease hallmarks: thrombopoietin-independent megakaryopoiesis, myeloid-lineage skewing, splenomegaly, bone marrow fibrosis, and expansion of megakaryocyte-primed CD41+ progenitors. Strikingly, introduction of CALR mutations enforced early reprogramming of human HSPCs and the induction of an endoplasmic reticulum stress response. The observed compensatory upregulation of chaperones revealed novel mutation-specific vulnerabilities with preferential sensitivity of CALR mutant cells to inhibition of the BiP chaperone and the proteasome. Overall, our humanized model improves purely murine models and provides a readily usable basis for testing of novel therapeutic strategies in a human setting.Johannes Foßelteder, Gabriel Pabst, Tommaso Sconocchia, Angelika Schlacher, Lisa Auinger, Karl Kashofer, Christine Beham-Schmid, Slave Trajanoski, Claudia Waskow, Wolfgang Schöll, Heinz Sill, Armin Zebisch, Albert Wölfler, Daniel Thomas, and Andreas Reinisc

    Cytokine-Based Log-Scale Expansion of Functional Murine Dendritic Cells

    Get PDF
    BACKGROUND: Limitations of the clinical efficacy of dendritic cell (DC)-based immunotherapy, as well as difficulties in their industrial production, are largely related to the limited number of autologous DCs from each patient. We here established a possible breakthrough, a simple and cytokine-based culture method to realize a log-scale order of functional murine DCs (>1,000-fold), which cells were used as a model before moving to human studies. METHODOLOGY/PRINCIPAL FINDINGS: Floating cultivation of lineage-negative hematopoietic progenitors from bone marrow in an optimized cytokine cocktail (FLT3-L, IL-3, IL-6, and SCF) led to a stable log-scale proliferation of these cells, and a subsequent differentiation study using IL-4/GM-CSF revealed that 3-weeks of expansion was optimal to produce CD11b+/CD11c+ DC-like cells. The expanded DCs had typical features of conventional myeloid DCs in vitro and in vivo, including identical efficacy as tumor vaccines. CONCLUSIONS/SIGNIFICANCE: The concept of DC expansion should make a significant contribution to the progress of DC-based immunotherapy

    Метод лабораторного определения параметров устройства гидроимпульсного воздействия

    Get PDF
    Дана стаття описує лабораторний метод, що визначає: мету, умови, обсяг і порядок проведення досліджень параметрів пристрою гідроімпульсної дії.This article describes the laboratory method that defines: the purpose, conditions, effort and procedure of the researching the device settings of hydroimpulsive impact

    Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages

    Get PDF
    Distinguishing dendritic cells (DCs) from other cells of the mononuclear phagocyte system is complicated by the shared expression of cell surface markers such as CD11c. In this study, we identified Zbtb46 (BTBD4) as a transcription factor selectively expressed by classical DCs (cDCs) and their committed progenitors but not by plasmacytoid DCs (pDCs), monocytes, macrophages, or other lymphoid or myeloid lineages. Using homologous recombination, we replaced the first coding exon of Zbtb46 with GFP to inactivate the locus while allowing detection of Zbtb46 expression. GFP expression in Zbtb46(gfp/+) mice recapitulated the cDC-specific expression of the native locus, being restricted to cDC precursors (pre-cDCs) and lymphoid organ- and tissue-resident cDCs. GFP(+) pre-cDCs had restricted developmental potential, generating cDCs but not pDCs, monocytes, or macrophages. Outside the immune system, Zbtb46 was expressed in committed erythroid progenitors and endothelial cell populations. Zbtb46 overexpression in bone marrow progenitor cells inhibited granulocyte potential and promoted cDC development, and although cDCs developed in Zbtb46(gfp/gfp) (Zbtb46 deficient) mice, they maintained expression of granulocyte colony-stimulating factor and leukemia inhibitory factor receptors, which are normally down-regulated in cDCs. Thus, Zbtb46 may help enforce cDC identity by restricting responsiveness to non-DC growth factors and may serve as a useful marker to identify rare cDC progenitors and distinguish between cDCs and other mononuclear phagocyte lineages

    Generation of Novel Bone Forming Cells (Monoosteophils) from the Cathelicidin-Derived Peptide LL-37 Treated Monocytes

    Get PDF
    Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair.Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK).Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis

    Depletion of Dendritic Cells Enhances Innate Anti-Bacterial Host Defense through Modulation of Phagocyte Homeostasis

    Get PDF
    Dendritic cells (DCs) as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye). We used CD11c-diphtheria toxin (DT) mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS) by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection
    corecore